

Create the sustainable home farm of your dreams!

Email: adpead@gmail.com Twitter: @adpead

Twitter: @adpead

About.me: https://about.me/allan_pead

• Linkedin: https://www.linkedin.com/in/adpead/

• Blog: https://explorationspace.co.za

Raspberry Pi South Africa

https://www.facebook.com/groups/1493503984198019

Cape Town MS Developer User Group

https://www.meetup.com/Cape-Town-Ms-Dev-User-Group/

Microsoft Internet of Things Most Valuable Professional Microsoft Azure Most Valuable Professional Microsoft Developer Technologies Most Valuable Professional

Allan Pead

What is this talk about?

- My Journey to building a sustainable farm in my home and garden
- Hope to inspire more home growing
- Index to items you may need
- Having fun and building cool things at a low hobbyist cost

My Journey...

We were doing things like this for Day Zero

Problem 1: Moving Water to the "Edge"

Problem 2: This may make me die. 🚱

Water is now my problem 😯

Then there was this...

Who did things like this during lockdown?

My Plant Growing Journey

My Plant Growing Journey

Arduino Smart Waterer + IoT Central

https://github.com/apead/SmartWateringKit

Arduino

https://github.com/ape

Other Grower Stations

M5 Stack – ESP32

https://github.com/apead/m5stackgrower

Azure IoT Dev Kit – STM32

https://github.com/apead/az3166arduinogrower

Things escalated..

Things needed to be BIGGER!

Project Success..

https://explorationspace.co.za/2022/02/11/declaring-the-agri-iot-experiment-a-success/

OfferZen Basil FTW

But why really do this?

Agricultural output needs to double by 2050 to meet the demands – United Nations

However..
Available water is getting less
Available land is shrinking
Climate Change

Basic Premise of Smart Growing

Input

Soil Moisture

Moisture < 30 %

Actuator
Water Pump

Switch Pump On

Basic Premise of Smart Growing

Input

Soil Moisture

Moisture > 70 %

Actuator
Water Pump

Switch Pump Off

Soil Moisture

- Moisture Percentage
- Different crops require different soil moisture levels to maximize yield
- Too much water can lead to root damage or "water logging" / rot
- Too little water causes wilting.

pH (power of hydrogen)

- Water
 - pH level of drinking water should be between 6 8.5
- Soil
 - For optimal yield and growth depends on the crop
 - Berries more acidic (4.0 -5.0)
 - Legumes more alkaline (7.5)

Turbidity

- Caused by particles suspended or dissolved in water that scatter light making the water appear cloudy or murky.
- Measured in NTU's
- High turbidity may cause crop / fruit discoloration
- High Turbidity may cause plants to have difficulty "breathing" if leaves are covered.

Salt Content (Nutrient Content)

- Electrical Conductivity (milliSiemens)
- Water
 - EC of drinking water should not exceed 1.4 mS/cm
 - Green water

- Soil
 - High soil salinity can cause root water absorption problems

Temperature

- Degrees Celsius
- Water
 - High water temperature promotes algae growth
 - High Temperature can attract pests
 - High Temperature can reduce oxygen levels
 - Very cold water can slow down germination

- Soil
 - Soil temperature effects seed germination
 - Warmer temperatures stimulate soil microbes

Water Pressure

- Pressure Pascal
 - Water pipe pressure
 - Detect leaks
 - Detect blocked pipes
 - Detect Water pump efficiency
 - Water Tanks
 - Downward pressure used for Tank Volume

Calibrate between minimum reading and maximum analog voltage reading

Atmospheric Conditions

Chipset example: BME280

- Air Temperature
- Humidity
- Air Pressure

- Weather Pattern Monitoring
- Water loss rates

Actuator Actions

- Pump
 - Distribute Liquids
 - Controlled by relays (on/off)

- Solenoids
 - Control flow of liquids

Building the Home Farm

Building the Home Farm

IoT Device and Power Unit

Senso

Pump

Rainwater Tank

Telemetry Zones

Circle of Life

Architecture – Home Farm

The Farm Tech Stack

- .NET Nanoframework (https://www.nanoframework.net/)
- NodeRed (https://nodered.org/)
- Mosquito MQTT (https://mosquitto.org/)
- Docker (https://www.docker.com/)
- Tasmota Sonoff Relays (https://tasmota.github.io/docs/)
- Bluetooth Low Energy (BLE)
- IoT Central (https://azure.microsoft.com/en-us/products/iot-central/)
- AvaloniaUI (https://avaloniaui.net/)
- .NET MAUI (Multi Application User Interface)
 https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui

The Farm Tech Stack

.NET Nanoframework

NodeRed (https://noc

Mosquito MQTT (http

Docker (https://www.deg

Tasmota - Sonoff Relay

Bluetooth Low Energy

IoT Central (https://azu

- AvaloniaUI (https://avaloniaui.net/)
- .NET MAUI (Multi Application User Interface)
 https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui

Node-Red

- Drag and Drop Flow Designer
- MQTT Support
- Message Transformation
- AWS IoT + Azure IoT Support
- Tasmota Support

Tasmota

- Sonoff Off-the-shelf Home Automation devices (ESP8266)
- Built in Relays to Switch on 220 V Things
- Support MQTT Locally via Tasmota firmware

Sonoff POW R2

Tasmota

https://siytek.com/how-to-flash-esp-devices-with-tasmota-using-raspberry-pi/

- Extremely low cost
- Long battery life
- Interact with hardware and electronics
- Wifi and BLE
- Onboard Analog to Digital

Microcontrollers – ESP32

- Extremely low cost
- Long battery life
- Interact with hardware and electronics
- Wifi and BLE
- Onboard Analog to Digital

.NET Nanoframework

Reduced version of the .NET Common Language Runtime (CLR)

Resource-constrained devices with as low as **256kB** of flash and **64kB** of RAM

Works on ESP 32

https://docs.nanoframework.net/

Nanoframework & .NET

```
using nanoFramework.Json;
using nanoFramework.M2Mqtt;
using nanoFramework.M2Mqtt.Messages;
using nanoFramework.M5Stack;
using nanoFramework.Networking;
using nanoFramework.Presentation.Media;
using System;
using System.Device.Adc;
using System.Device.Gpio;
using System.Diagnostics;
using System.Text;
using System.Text;
using System.Threading;
```


.NET nanoFramework Extension

Visual Studio extension for .NET nanoFramework. Enables creating C# applications for micro-controllers and provides debugging tools.

Nanoframework & .NET


```
Program.cs → X
SustainabilityNf

→ SustainabilityNf.Program

                                                                        → Main()
       94
        95
                              while (true)
        96
        98
                                var reading = moisture.GetMoisturePercentage();
        99
                                           oreading 79 -
      100
                                   Console.ForegroundColor = Color.Blue;
      101 🚀
                                   Console.CursorTop = 0;
      102
                                   Console.CursorLeft = 12;
      103
```

Reading a Moisture Sensor in C#

```
// Initialize Analog to Digital Converter
AdcController adc = new AdcController();

// Open Analog Channel
AdcChannel moistureAnalog = adc.OpenChannel(7);

// Read Value from Pin
moistureAnalog.ReadValue();
```

Switching on a Relay

```
// Initialize Gpio Controller
 GpioController gpioController = new GpioController();
// Open Digital Pin Channel
GpioPin pin = gpioController.OpenPin(2);
// Set Mode for Digital Pin (Input or Output)
gpioController.SetPinMode(2, PinMode.Output);
// Switch relay on
pin.Write(PinValue.High);
```

C# Event Handling Electronics

```
// Initialize GpioPin or Button
GpioPin userButton = gpioController.OpenPin(15, PinMode.Input);
// Assign event if pin state changes
userButton.ValueChanged += UserButton_ValueChanged;
      private void UserButton_ValueChanged
              (object sender, PinValueChangedEventArgs e)
            if (e.ChangeType == PinEventTypes.Rising)
                    _greenLED.Write(PinValue.High);
             else
                    _greenLED.Write(PinValue.Low);
```


Rising Edge

Falling Edge

```
// Initialize Wifi with router ssid and password
 bool success = WifiNetworkHelper.ConnectDhcp(Ssid, Password, true, token: cs.Token);
// Initialize Mgtt Client with connection information
MgttClient mgttc = new MgttClient(MQTTBrokerAddress);
// Assign Event Handler for code to be called on a message publish
mgttc.MgttMsgPublishReceived += Mgttc_MgttMsgPublishReceived;
// Subscribe to specific topics only
mqttc.Subscribe(
                    new[] {
                    "garden/zonea/tele",
                     "house/enviro-monitor/tele"
                    new[] {
                        MqttQoSLevel.AtLeastOnce,
                        MqttQoSLevel.AtLeastOnce
```

```
M5Core.ButtonCenter.Press += (sender, e) =>
   if (mqttc.IsConnected)
      mqttc.Publish("garden/sonoff-zonea/cmnd/power1",
      Encoding.UTF8.GetBytes("off"));
M5Core.ButtonRight.Press += (sender, e) =>
    if (mqttc.IsConnected)
      mqttc.Publish("house/sonoff-zonea/cmnd/power1",
       Encoding.UTF8.GetBytes("on"));
```



```
M5Core.ButtonCenter.Press += (sender, e) =>
        if (mqttc.IsConnected)
                                                                                         0X10: 28.6 KU
                                                        2023-05-21 16:24:09.139 INFO
Output
                                                        2023-05-21 16:24:09.142 INFO
Show output from: Debug
                                                        2023-05-21 16:24:09.145 INFO
HOLSCHIC I CI CCITCUEC JJ N
                                                        2023-05-21 16:24:09.150 INFO
 Moisture Percentage 56 %
 Moisture Percentage 57 %
                                                        2023-05-21 16:24:09.154 INFO
 Moisture Percentage 55 %
                                                        2023-05-21 16:24:09.157 INFO
 Moisture Percentage 57 %
                                                        Sending telemetry..
 Moisture Percentage 56 %
 Moisture Percentage 55 %
```

"pressure": 1020.69664244,

redu: 231.9 k0 nh3: 91.4 k0 pm1: 1.0 ug/m3 pm25: 2.0 ug/m3 pm10: 4.0 ug/m3 temp: 20.4 C 2023-05-21 16:24:28.264 INFO 2023-05-21 16:24:28.275 INFO pres: 1020.7 hPa humi: 44.3 % 2023-05-21 16:24:28.286 INFO ligh: 96.7 Lux 2023-05-21 16:24:28.299 INFO oxid: 29.2 k0 2023-05-21 16:24:28.366 INFO 2023-05-21 16:24:28.369 INFO redu: 234.6 k0 2023-05-21 16:24:28.373 INFO nh3: 92.4 k0 2023-05-21 16:24:28.380 INFO pm1: 1.0 ug/m3 pm25: 2.0 ug/m3 2023-05-21 16:24:28.383 INFO pm10: 4.0 ug/m3 2023-05-21 16:24:28.387 INFO Sending telemetry...

20.39 C

44.34 %

96.73 Lux

29.20 k0 234.57 k0

92.43 kO

1020.70 kPa

Moisture Percentage 54 %

Moisture Percentage 56 %

Moisture Percentage 57 %

Moisture Percentage 54 %

Moisture Percentage 54 % Moisture Percentage 54 % Moisture Percentage 54 % Moisture Percentage 54 %

"temperature": 20.3952287385,

ESP32 Deep Sleep

```
// Deep Sleep by time
Sleep.EnableWakeupByTimer(new TimeSpan(0, 0,
minutesToGoToSleep, 0));
    Sleep.StartDeepSleep();

// Wake up on Pin Changes
Sleep.EnableWakeupByMultiPins(Sleep.WakeupGpioPin.Pin32,
Sleep.WakeupMode.AnyHigh);
Sleep.StartDeepSleep();
```

Messaging

- DeviceId
- SensorStatus
- SensorType
- TimeStamp
- SensorValue
- SensorUnit
- Location

```
5/23/2023. 5:22:07 AM node: 9c69acf3.f98a
garden/zonea/tele : msg.payload : string[787]
"[{"sensorStatus":"online", "sensorType": "moisture", "sensorTimestamp": "05/23/2023
03:22:07", "sensorValue": "73", "deviceid": "zoneaesp321", "sensorUnit": "%", "sensor": "soilmoisturea", "location": "z
onea"},{"sensorStatus":"online","sensorType":"moisture","sensorTimestamp":"05/23/2023
03:22:07", "sensorValue": "70", "deviceid": "zoneaesp321", "sensorUnit": "%", "sensor": "soilmoistureb", "location": "z
onea"},{"sensorStatus":"online","sensorType":"temperature","sensorTimestamp":"05/23/2023
03:22:07", "sensorValue": "19.2", "deviceid": "zoneaesp321", "sensorUnit": "C", "sensor": "soiltemp", "location": "zone
a"},{"sensorStatus":"online","sensorType":"moisture","sensorTimestamp":"05/23/2023
03:22:07", "sensorValue": "73", "deviceid": "zoneaesp321", "sensorUnit": "percent", "sensor": "soilmoisturea", "locati
on":"zonea"}]"
5/23/2023, 5:22:07 AM node: fe6c1b35.4eeb78
garden/zoneb/tele: msg.payload: string[202]
"[{"sensorStatus":"online", "sensorType": "moisture", "sensorTimestamp": "05/23/2023
03:22:07", "sensorValue": "99", "deviceid": "zonebesp321", "sensorUnit": "percent", "sensor": "soilmoisturea", "locati
on":"zoneb"}]"
5/23/2023, 5:22:07 AM node: fe6c1b35.4eeb78
garden/zoneb/tele : msg.payload : string[391]
"[{"sensorType":"volume", "sensorTimestamp":"05/23/2023
03:22:07", "sensorValue": "100", "deviceid": "zonebesp322", "sensorUnit": "percent", "sensor": "watertank", "location"
:"zoneb"},{"sensorStatus":"online","sensorType":"temperature","sensorTimestamp":"05/23/2023
03:22:07", "sensorValue": "22", "deviceid": "zonebesp322", "sensorUnit": "c", "sensor": "watertank", "location": "zoneb
"}]"
5/23/2023, 5:22:07 AM node: 8bf5f080.738db
garden/zonec/tele : msg.payload : string[202]
"[{"sensorStatus":"online", "sensorType": "moisture", "sensorTimestamp": "05/23/2023
03:22:07", "sensorValue": "82", "deviceid": "zonecesp322", "sensorUnit": "percent", "sensor": "soilmoisturea", "locati
on":"zonec"}]"
```

Publish / Subscribe

Input

Soil Moisture

Moisture < 30 %

Subscribe to "zone sensor" topic

Actuator

Water Pump

Switch Pump On

Publish to "zone pump" topic

Mobile and BLE

- Zone Devices Advertising
- Telemetry Service
 - Water Temp Characteristic
 - Ph Characteristic
 - Ec Characteristic
 - Clarity Characteristic
 - Orp Characteristic
- Battery Service
 - Battery Level Characteristic
- Implemented for Zone Devices that are not set to deep sleep

Bluetooth

```
// Event Handler for External BLE Read Request to IoT Device
void TemperatureCharacteristic_ReadRequested(GattLocalCharacteristic sender,
GattReadRequestedEventArgs ReadRequestEventArgs)
            GattReadRequest request = ReadRequestEventArgs.GetRequest();
            request.RespondWithValue(GetTemperatureBuffer());
        private static Buffer GetTemperatureBuffer()
             // Read from Ds18b20 Sensor using One Wire Protocol
            Temperature temperature = ReadingFromOneSensor();
            DataWriter dw = new DataWriter();
            dw.WriteString(temperature.DegreesCelsius.ToString("F"));
            return dw.DetachBuffer();
```

Telemetry pushed to Azure IoT Central (Wifi)

Farm Squares

• 3 m x 3 m

- Grounding sheets3 x 10 m Rolls

Farm Squares

Irrigated

Wired for Sensors

Ground based sensors

- Waterproofed Sensors
- Place Moisture Sensors in gaps where least likely to have sprinkler reach

Powering the farm

- 12 V DC per Zone
- 10 W, 30W, 50 W, 100 W Solar Panels
- Solar Charge Controller

Powering the

- 12 V DC per Zone
- 10 W, 30W, 50 W, 100 W S
- Solar Charge Controller

.za/pages/search-results-page?q=cinco

Batteries

- 12 V 7aH Lead Acid
- Works directly with Charge Controllers and Solar Controllers
- Reuse your gate or fence batteries

Batteries

- 18650 Lithium
- Use BMS (Battery Management Systems)

https://www.robotics.org.za/BMS-20A

https://www.robotics.org.za/HX-3S-FL25A

Solar Controllers

- 12 V / 24 V DC
- Max. Input Voltage of Solar Panel:
 55V
- USB Ports
- Waterproof IP22 (Large Solids and Water Droplets vertically)

Charge Controllers

- 12 V 24 V DC
- 10 V 30 V DC Input
- Variable Charge Start and End

Irrigation Piping

- 15 mm piping
- Microjet sprinklers
- 5 mm sprinkler pipes

Irrigation with Water Tanks

- Main Pump JoJo Pump
 - Switch with 220V Relay

- Secondary 12 V DC Pumps
 - Switched with 12 V Relay

https://www.communica.co.za/products/cmu-high-pressu-water-pump-12vdc

Irrigation with Water Tanks

 Always use a Solenoid to switch Water sources on and off

12 V Solenoid

https://www.communica.co.za/products/hkd-g1-2in-water-flow-solenoid?variant=39345739595849

- Use Capacitive Moisture Sensors
- Protect any exposed electronics

Or use waterproof capacitive moisture sensors

Ruggedizing the Farm - Enclosures

- Use waterproof enclosures
- Improve seals with rubber grommets

Ruggedizing the Farm - Wood

- Treat all wood surfaces
- Try not to use anything harmful
- Linseed Oil

https://www.builders.co.za/Paint-%26-Adhesives/Woodfinish/Linseed-Oil/Smith-and-Co-Boiled-Linseed-Oil---Amber-%28750ml%29/p/0000000000000642933

• Twitter: @adpead

• About.me: https://about.me/allan_pead

• Linkedin: https://www.linkedin.com/in/adpead/

• Blog: https://explorationspace.co.za

- Raspberry Pi South Africa
- https://www.facebook.com/groups/1493503984198019
- Cape Town MS Developer User Group
- https://www.meetup.com/Cape-Town-Ms-Dev-User-Group/

Thank you!!